

# **WERO**SIL-TTC

# HIGH-RELEASE COVERINGS FOR NIP-ROLLER APPLICATIONS

# **PRODUCT PORTFOLIO**

| Compound | Sh A | Color      | EL. Properties | Max.°C | MO | O <sub>3</sub> | ELA<br>• | E/K<br>• | AB<br>• |
|----------|------|------------|----------------|--------|----|----------------|----------|----------|---------|
| WEROSIL- | ТС   |            |                |        |    |                |          |          |         |
| O659-51  | 65   | light blue | isolating      | 220    | 2  | 1              | 1        | 3        | 3       |
| O809-51  | 80   | light blue | isolating      | 220    | 2  | 1              | 1        | 3        | 3       |
| O909-54  | 90   | ocean blue | isolating      | 220    | 2  | 1              | 1        | 3        | 3       |

<sup>• =</sup> Chemical Resistance :  $MO = Mineral Oil | O_3 = Ozone | E/K = Esters/Ketones$ 

The electrical resistance was tested on a laboratory sample and does not match the value of the rubberized roller.

#### **Features:**

| •        | High anti-adhesive surface property |
|----------|-------------------------------------|
| •        | High thermal conductivity           |
| •        | Optimized physical properties       |
| <b>⊘</b> | Can be regrinded                    |

### Fields of application:

| <b>©</b> | Film extrusion       |
|----------|----------------------|
| <b>©</b> | Extrusion laminating |
| <b>©</b> | Melt embossing       |
| •        | Hot lamination       |

## **Liability exclusion**

The above information is based on our knowledge and experience under normal conditions, assuming the product is stored and used properly. This data is understood as the characterization of the material properties and not as minimum values in terms of specification. Technical changes reserved.

 $<sup>1 =</sup> resistant \mid 2 = resistant$  with restrictions  $\mid 3 = not$  resistant

<sup>• =</sup> Physical Properties : ELA = Elasticity | AB = Abrasion Resistance

 $<sup>1 =</sup> very good \mid 2 = good \mid 3 = moderate$ 

Electric (EL) Properties : Conductive <  $10^4\Omega$  | Dissipative <  $10^8\Omega$  | Isolating >  $10^{14}\Omega$ .